

Find the sum of the first 100 terms of the arithmetic sequence with $a_9 = 31$ and $a_{21} = 22$.

SCORE: ____/6 PTS

Use fractions, NOT decimals, for all work.

$$a_{4} = a_{1} + 8d = 31$$
 Subtract

 $a_{21} = a_{1} + 20d = 22$ Subtract

 $d = -\frac{9}{4}$
 $d = -\frac{3}{4}$
 $a_{1} = 37$
 $a_{1} = 37$
 $a_{1} = 37$
 $a_{1} = 37$
 $a_{1} = 37$

OR $a_{100} = 37 + 99(-\frac{3}{4})$
 $a_{100} = -37\frac{1}{4}$
 $a_{100} = -37\frac{1}{4}$
 $a_{100} = -37\frac{1}{4}$
 $a_{100} = -37\frac{1}{4}$

Find the sum $\sum_{n=2}^{7} (-1)^{n+1} (13-2n)$. Show clearly the terms being added together.

SCORE: ____/3 PTS

Find the general formula and the 12^{th} term of the geometric sequence with $a_2 = 750$ and $a_5 = 162$.

SCORE: _____/ 5 PTS

Round all calculations to 4 decimal places.

$$a_{2} = a_{1}r = 750$$
 $a_{5} = a_{1}r^{4} = 162$
 $a_{5} = a_{1}r^{4} = 162$
 $a_{12} = 1250(0.6)^{11}$
 $a_{12} = 1250(0.6)^{11}$
 $a_{12} = 1250(0.6)^{11}$
 $a_{13} = 1250$
 $a_{14} = 1250$
 $a_{15} = 0.6$
 $a_{15} =$